
Definition  Let  be GD with learning rate  

for a function . A period-2 stable oscillation is 

1. such that , and 

2.  is not a minima of .                                          

Fη : Ω → Ω η
f

∃x ∈ Ω, F2
η (x) ≜ Fη(Fη(x)) = x

x f
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Stable Oscillation (SO)

III. Case Study: Two-layer Single-neuron ReLU Network

Flattest minima
For any minimizer with , the largest 
eigenvalue of Hessian is  

.

vw = w̃

λ1 =
(∥w∥ − v)2 + 2∥w̃∥

d
≥ 2

∥w̃∥
d

ConvergenceSetting

(a) Student net: 

, 

(b) Teacher model: , 

(c) Population loss: .

f(x; θ) = v ⋅ σ(w⊤x), v ∈ ℝ,

w, x ∈ ℝd

y |x = σ(w̃⊤x)

L(θ) = 𝔼x∈𝒮d−1[f(x; θ) − y |x]2

Examples:  the base model  can be 

sin(x), tanh(x), high-order monomial, exp(x), 
log(x), sigmoid, gaussian…

g

IV. Case Study: Matrix Factorization

Beyond the Edge of Stability via Two-step Gradient Updates
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Existence: general 1D functions
Consider any 1D differentiable function  around a local 
minima , satisfying  
    (i) , and 
    (ii)  at . 
Then, there exists  with sufficiently small  and 

 such that: for any point  between  and 
, there exists a learning rate  such that , 

and 

.

f(x)
x̄

f (3)(x̄) ≠ 0
3[ f (3)]2 − f′ ′ f (4) > 0 x̄

ϵ |ϵ |
ϵ ⋅ f (3) > 0 x0 x̄
x̄ − ϵ η F2

η (x0) = x0

2
f′ ′ (x̄)

< η <
2

f′ ′ (x̄) − ϵ ⋅ f (3)(x̄)

For a function  that the lowest order non-zero derivative 
(except the ) at  is  with , the above 
conditions are changed to 
(i) if  is odd and , or 
(ii) if  is even and . 

f
f′ ′ x̄ f (k)(x̄) k ≥ 4

k ϵ ⋅ f (k)(x̄) > 0,f (k+1)(x̄) < 0
k f (k)(x̄) < 0

Existence:  loss on general 1D functionsL2
Base model:                   Target value:  
Loss: 

g(x) y
f(x) = (g(x) − y)2

From conditions on general 1-D functions, stable 
oscillation exists around  if 

(i) , 
(ii) .

x̄ = g−1(y)
g′ (x̄) ≠ 0
g′ (x̄)g(3)(x̄) < 6[g′ ′ (x̄)]2

Composition rule: if both  satisfy the above 
conditions at , then  also satisfies 
the conditions to allow stable oscillation around .

p(x), q(y)
x = x̄, y = p(x̄) q(p(x))

x = x̄
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Convergence: a special 1D function

Loss:  

Learning rate: 

f(x) =
1
4

(x2 − 1)2

1 < η < 1.121
“Symmetric scalar factorization”

Initialization: any point x0 ∈ (0,1)
Convergence: it converges to a period-2 orbit  
where  are the positive solutions of  

.

{x = δi | i = 1,2}
δ1, δ2

η =
1

δ2 ( 1
δ2 − 3

4 + 1
2 )

Convergence: a special 2D function

Loss:  

Learning rate: 

f(x, y) =
1
2

(xy − 1)2

1 < η < 1.121
“Asymmetric scalar factorization”

Initialization: some conditions that guarantee  alwaysx, y > 0
Convergence: it converges to a period-2 orbit as 

 where  are the same as above.{(x = y = δi) | i = 1,2} δ1, δ2

Balancing effect:   despite of different init.|x − y | → 0
Previous balancing effects:   

(i) [Du2018] GF:  remains unchanged. 

(ii) [Wang2022] GD below EoS:  gets smaller, but not 0.

x2 − y2

x2 − y2

Sharpness at the flattest minima is 2
∥w̃∥

d
EoS learning rate is 

d
∥w̃∥

 as projw̃⊥
w → 0 𝒪 ((1 − 0.030K)t)

1. Directional alignment:

v − ∥w∥ → 0
2. Balancing effect:

For  with , it converges toη = K ⋅
d

∥w̃∥
K ∈ (1,1.121)

 is in a period-2 orbitv = ∥w∥
3. Stable oscillation: Same as the 2-D case

Setting

(a) Learnable weights: , 

(b)Target: PSD  with , 

(c) Loss: .

Y, Z ∈ ℝd×d

C ∈ ℝd×d λ1 = 1

L(Y, Z) =
1
2

∥YZ⊤ − C∥2
F

1D condition at any minimizer

For any minimizer with , consider the 
1D function  at the cross section of the loss 
landscape  and the leading eigen-direction  of 
Hessian.

YZ⊤ = C
LΔ

L Δ

 satisfies the 1D condition at the minimizer as LΔ
3[L(3)

Δ ]2 − L(2)
Δ L(4)

Δ > 0

MF allows stable oscillation in 1D subspace!

Convergence (observations)

For  and , it converges toη ∈ (1,1.121) η(1 + λ2) < 2

Y = δiuv⊤+
d

∑
j=2

σy,juy,jv⊤
y,j

Z = δiuv⊤+
d

∑
j=2

σz,juz,jv⊤
z,j

YZ⊤ − C = (δ2
i − 1)uu⊤

1. Balancing effect: 2. Oscillation in 1D subspace:

[Wang2022]

Ours

Nonlinear High-dim

Experiments:  MLPs on MNIST

θt+1

θt

f

θ̄

θt θt+1θ̄

f

Obs 1:  aligns with  in directionv1(Hessian) ∇Loss Obs 2:  holds at 3[ f (3)]2 − f′ ′ f (4) > 0 θ̄

[Cohen2021]: GD is observed to still converge regardless 
of local instability, i.e., .λmax ≈ 2/η

Question: why does GD not explode?

When optimizing the quadratic , GD explodes 
once .

f(x) = 0.5λx2

η > 2/λ

Ours: many problems allow stable oscillations around minima 
when , including NNs.η > 2/λ

Summary

In the setting of , we show 

(i) Existence of SO and convergence on 1D functions, 

(ii) Provable convergence on single-neuron ReLU net, 

(iii) Observations of convergence on matrix factorization.

η > 2/λmax (H(x̄))


