Lei Chen, Joan Bruna
New York University

I. Introduction
[Cohen2021]: GD is observed to still converge regardless of local instability, i.e., $\lambda_{\max } \approx 2 / \eta$.

Question: why does GD not explode?

When optimizing the quadratic $f(x)=0.5 \lambda x^{2}$, GD explodes once $\eta>2 / \lambda$.

Ours: many problems allow stable oscillations around minima when $\eta>2 / \lambda$, including NNs .

Stable Oscillation (SO)

Definition Let $F_{\eta}: \Omega \rightarrow \Omega$ be GD with learning rate η for a function f. A period-2 stable oscillation is

1. $\exists x \in \Omega$, such that $F_{\eta}^{2}(x) \triangleq F_{\eta}\left(F_{\eta}(x)\right)=x$, and
2. x is not a minima of f.

Summary

In the setting of $\eta>2 / \lambda_{\text {max }}(H(\bar{x}))$, we show
(i) Existence of SO and convergence on 1D functions, (ii) Provable convergence on single-neuron ReLU net, (iii) Observations of convergence on matrix factorization

II. Stable Oscillation on Low-dim Functions

Existence: general 1D functions

Consider any 1D differentiable function $f(x)$ around a loca minima \bar{x}, satisfying
(i) $f^{(3)}(\bar{x}) \neq 0$, and
(ii) $3\left[f^{(3)}\right]^{2}-f^{\prime \prime} f^{(4)}>0$ at \bar{x}.

Then, there exists ϵ with sufficiently small $|\epsilon|$ and $\epsilon \cdot f^{(3)}>0$ such that: for any point x_{0} between \bar{x} and $\bar{x}-\epsilon$, there exists a learning rate η such that $F_{\eta}^{2}\left(x_{0}\right)=x_{0}$, and

For a function f that the lowest order non-zero derivative (except the f^{\prime}) at \bar{x} is $f^{(k)}(\bar{x})$ with $k \geq 4$, the above conditions are changed to
(i) if k is odd and $\epsilon \cdot f^{(k)}(\bar{x})>0, f^{(k+1)}(\bar{x})<0$, or (ii) if k is even and $f^{(k)}(\bar{x})<0$.

Existence: L_{2} loss on general 1D functions

Base model: $g(x) \quad$ Target value: y
Loss: $f(x)=(g(x)-y)^{2}$
From conditions on general 1-D functions, stable oscillation exists around $\bar{x}=g^{-1}(y)$ if
(i) $g^{\prime}(\bar{x}) \neq 0$,
(ii) $g^{\prime}(\bar{x}) g^{(3)}(\bar{x})<6\left[g^{\prime \prime}(\bar{x})\right]^{2}$.

Composition rule: if both $p(x), q(y)$ satisfy the above conditions at $x=\bar{x}, y=p(\bar{x})$, then $q(p(x))$ also satisfies the conditions to allow stable oscillation around $x=\bar{x}$.

> Examples: the base model g can be $\sin (x)$, tanh (x), high-order monomial, exp (x), $\log (x)$, sigmoid, gaussian...

Convergence: a special 1D function

Loss: $f(x)=\frac{1}{4}\left(x^{2}-1\right)^{2}$ \qquad
Learning rate: $1<\eta<1.121$
"Symmetric scalar factorization"
Initialization: any point $x_{0} \in(0,1)$
Convergence: it converges to a period-2 orbit $\left\{x=\delta_{i} \mid i=1,2\right\}$
where δ_{1}, δ_{2} are the positive solutions of

$$
\eta=\frac{1}{\delta^{2}\left(\sqrt{\frac{1}{\delta^{2}}-\frac{3}{4}}+\frac{1}{2}\right)}
$$

Convergence: a special 2D function

Loss: $f(x, y)=\frac{1}{2}(x y-1)^{2} \quad$ "Asymmetric scalar factorization" Learning rate: $1<\eta<1.12$
Initialization: some conditions that guarantee $x, y>0$ always Convergence: it converges to a period-2 orbit as $\left\{\left(x=y=\delta_{i}\right) \mid i=1,2\right\}$ where δ_{1}, δ_{2} are the same as above.
Balancing effect: $|x-y| \rightarrow 0$ despite of different init. Previous balancing effects:
(i) [Du2018] GF: $x^{2}-y^{2}$ remains unchanged.
(ii) [Wang2022] GD below EoS: $x^{2}-y^{2}$ gets smaller, but not 0 .

II. Case Study: Two-layer Single-neuron ReLU Network

IV. Case Study: Matrix Factorization

Setting Nonlinear
 Convergence

(a) Student net: $f(x ; \theta)=v \cdot \sigma\left(w^{\top} x\right), v \in \mathbb{R}$,
$w, x \in \mathbb{R}^{d}$,
(b) Teacher model: $y \mid x=\sigma\left(\tilde{w}^{\top} x\right)$,
(c) Population loss: $L(\theta)=\mathbb{E}_{x \in \delta^{d-1}}[f(x ; \theta)-y \mid x]^{2}$.

Flattest minima

For any minimizer with $\nu w=\tilde{w}$, the largest
eigenvalue of Hessian is

$$
\lambda_{1}=\frac{(\|w\|-v)^{2}+2\|\tilde{w}\|}{d} \geq 2 \frac{\|\tilde{w}\|}{d} .
$$

\Rightarrow Sharpness at the flattest minima is $2 \frac{\|\tilde{w}\|}{d}$
EoS learning rate is $\frac{d}{\|\tilde{w}\|}$

For $\eta=K \cdot \frac{d}{\|\tilde{w}\|}$ with $K \in(1,1.121)$, it converges to

1. Directional alignment:

$$
\operatorname{pro}_{\tilde{w}_{\perp}} w \rightarrow 0 \text { as } \mathcal{O}\left((1-0.030 K)^{t}\right)
$$

2. Balancing effect:
$|v-\|w\|| \rightarrow 0$
3. Stable oscillation: Same as the 2-D case
$\nu=\|w\|$ is in a period- 2 orbit

References

[Cohen2021] Cohen et al., "Gradient Descent on Neural Networks Typically Occurs at the Edge of Stability". ICLR, 2021
[Wang2022] Wang et al., "Large Learning Rate Tames Homogeneity: Convergence [Wang2022] Wang et al., "Large Lea
and Balancing Effect". ICLR, 2022
and Balancing Effect". ICLR, 2022 . Models: Layers are Automatically Balanced"'. NeurIPS 2018

Setting High-dim

(a) Learnable weights: $\mathbf{Y}, \mathbf{Z} \in \mathbb{R}^{d \times d}$,
(b) Target: $\operatorname{PSD} \mathbf{C} \in \mathbb{R}^{d \times d}$ with $\lambda_{1}=1$,
(c) Loss: $L(\mathbf{Y}, \mathbf{Z})=\frac{1}{2}\left\|\mathbf{Y} \mathbf{Z}^{\top}-\mathbf{C}\right\|_{F}^{2}$.

1D condition at any minimizer

For any minimizer with $\mathbf{Y} \mathbf{Z}^{\top}=\mathbf{C}$, consider the 1D function L_{Δ} at the cross section of the loss landscape L and the leading eigen-direction Δ of Hessian.
L_{Δ} satisfies the 1D condition at the minimizer as

$$
3\left[L_{\Delta}^{(3)}\right]^{2}-L_{\Delta}^{(2)} L_{\Delta}^{(4)}>0
$$

MF allows stable oscillation in 1D subspace!

Convergence (observations)
For $\eta \in(1,1.121)$ and $\eta\left(1+\lambda_{2}\right)<2$, it converges to

1. Balancing effect: \quad 2. Oscillation in 1 D subspace:

$$
\mathbf{Y}=\delta_{i} u \nu^{\top}+\sum_{\substack{j=2 \\ d}}^{d} \sigma_{y, j} u_{y, j} \nu_{y, j}^{\top} \quad \mathbf{Y Z}^{\top}-\mathbf{C}=\left(\delta_{i}^{2}-1\right) u u^{\top}
$$

$$
\mathbf{Z}=\delta_{i} u v^{\top}+\sum_{j=2}^{d} \sigma_{z, j} u_{z, j} v_{z, j}^{\top}
$$

