

Beyond the Edge of Stability via Two-step Gradient Updates

I. Introduction

[Cohen2021]: GD is observed to still **converge** regardless of local instability, i.e., $\lambda_{\rm max} \approx 2/\eta$.

Question: why does GD not explode?

When optimizing the quadratic $f(x) = 0.5\lambda x^2$, GD explodes once $\eta > 2/\lambda$.

Ours: many problems allow stable oscillations around minima when $\eta > 2/\lambda$, including NNs.

Stable Oscillation (SO)

Definition Let $F_n: \Omega \to \Omega$ be GD with learning rate η

for a function *f*. A period-2 stable oscillation is

- 1. $\exists x \in \Omega$, such that $F_n^2(x) \triangleq F_n(F_n(x)) = x$, and
- 2. x is not a minima of f.

Summary

In the setting of $\eta > 2/\lambda_{max} (H(\bar{x}))$, we show

- (i) Existence of SO and convergence on 1D functions,
- (ii) Provable convergence on single-neuron ReLU net,
- (iii) Observations of convergence on matrix factorization.

Setting

Nonlinear

(a) Student net: $f(x; \theta) = v \cdot \sigma(w^{\top}x), v \in \mathbb{R}$,

$$w, x \in \mathbb{R}^d$$
,

- (b) Teacher model: $y | x = \sigma(\tilde{w}^{\top}x)$,
- (c) Population loss: $L(\theta) = \mathbb{E}_{x \in S^{d-1}} [f(x; \theta) y | x]^2$.

Flattest minima

For any minimizer with $vw = \tilde{w}$, the largest eigenvalue of Hessian is $\lambda_1 = \frac{(\|w\| - v)^2 + 2\|\tilde{w}\|}{1 - 2} \ge 2\frac{\|\tilde{w}\|}{1 - 2}.$

Sharpness at the flattest minima is $2\frac{||w||}{d}$ EoS learning rate is $\frac{\tilde{w}}{\|\tilde{w}\|}$

Lei Chen, Joan Bruna New York University

II. Stable Oscillation on Low-dim Functions

[Du2018] Du et al., "Algorithmic Regularization in Learning Deep Homogeneous Models: Layers are Automatically Balanced". NeurIPS 2018

Existence: L_2 loss on general 1D functions

Base model: g(x)Target value: y Loss: $f(x) = (g(x) - y)^2$

From conditions on general 1-D functions, stable oscillation exists around $\bar{x} = g^{-1}(y)$ if (i) $g'(\bar{x}) \neq 0$,

(ii) $g'(\bar{x})g^{(3)}(\bar{x}) < 6[g''(\bar{x})]^2$.

Composition rule: if both p(x), q(y) satisfy the above conditions at $x = \bar{x}, y = p(\bar{x})$, then q(p(x)) also satisfies the conditions to allow stable oscillation around $x = \bar{x}$.

Examples: the base model g can be sin(x), tanh(x), high-order monomial, exp(x), log(x), sigmoid, gaussian...

[†] 125 -

² 100 -

75 -

م ₅₀ -

Obs 2: $3[f^{(3)}]^2 - f''f^{(4)} > 0$ holds at $\bar{\theta}$

 $--- 3[f^{(3)}]^2 - f^{(2)} \cdot f^{(4)}$

non-positive

50 75 100 125 150 175 200

IV. Case Study: Matrix Factorization

Setting

High-dim

1 - [cos(v1, grad L)]

(a) Learnable weights: $\mathbf{Y}, \mathbf{Z} \in \mathbb{R}^{d \times d}$, (b)Target: PSD $\mathbf{C} \in \mathbb{R}^{d \times d}$ with $\lambda_1 = 1$,

:) Loss:
$$L(\mathbf{Y}, \mathbf{Z}) = \frac{1}{2} \|\mathbf{Y}\mathbf{Z}^{\mathsf{T}} - \mathbf{C}\|_{F}^{2}$$

1D condition at any minimizer

For any minimizer with $\mathbf{Y}\mathbf{Z}^{ op}=\mathbf{C}$, consider the 1D function L_{Λ} at the cross section of the loss landscape L and the leading eigen-direction Δ of Hessian.

 L_{Λ} satisfies the 1D condition at the minimizer as $3[L_{\Lambda}^{(3)}]^2 - L_{\Lambda}^{(2)}L_{\Lambda}^{(4)} > 0$

MF allows stable oscillation in 1D subspace!

Convergence (observations)

For $\eta \in (1, 1.121)$ and $\eta(1 + \lambda_2) < 2$, it converges to

arxiv: 2206.04172

2. Oscillation in 1D subspace: