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ll. Stable Oscillation on Low-dim Functions

l. Introduction

[Cohen2021]: GD is observed to still converge regardless Existence: general 1D functions Existence: L, loss on general 1D functions Convergence: a special 1D function
of local instability, i.e., 4, ., = 2/7.

Consider any 1D differentiable function f(x) around a local Base model: g(x) Target value: y Loss: f(x) = 1 (2 — 1Y
Question: why does GD not explode? minima X, satisfying Loss: f(x) = (g(x) — y)? | 4 | “Symmetric scalar factorization” |
(i) FOx) # 0, and _earningrate: 1 <y < 1.121
wh i o th drat — 05122 GD exolod (if) 3[ f(3)]2 —f f(4) > 0 at ¥ From conditions on general 1-D functions, stable S .
en optimizing the quadratic f(x) = 0.54x%, SXpIOdes : : - oscillation exists around x = g_l(y) if nitialization: any point x, € (0,1)
oncen > 2/A. Then, there exists € with sufficiently small | e| and o C it ; iod-2 orbit {x = .17 = 1.2
(3) . , _ (i) g'(x) # 0, onvergence: it converges to a period-2 orbit {x = 6,|i = 1,2}
e - {77 > 0 such that: for any point x, between x and Y o (D)0 O(F) < 6[0”(7)]2 where 5. 5~ are the positive solutions of
Ours: many problems allow stable oscillations around minima X — €, there exists a learning rate 7 such that F;?(xo) = X, (i) g'(0)g(x) < 6[g"(X)]". EX%) P /
when 7 > 2/4, including NNs. and n = .
2 Composition rule: if both p(x), g(v) satisfy the above 52 ( 1 _3. l)
< oy 0 — — o o 2
Stable Oscillation (SO) ] (@ —e-fOR) conditions at x = X,y = p(), then g(p(x)) also satisfies oo

the conditions to allow stable oscillation around x = Xx.

Definition Let F, : 2 — (2 be GD with learning rate 77 Convergence: a special 2D function

For a function f that the lowest order non-zero derivative Examples: the base model g can be

for a function f. A period-2 stable oscillation is (except the 1) at X is f®(X) with k > 4, the above , . R B s ~ f -
1. Hx e Q, SUCh that Fz(x) é F (F (x)) — x’ and Conditions a]:e Changéd -to B Sln(X) tanh(X) hlgh Ol’del’ mOnomlaI eXp(X) ‘ LOSS.f(xa )’) T 2 (—xy 1) Symmetrlc ?Iaijator,zatlon
1 A () if kisoddand € - FO®) > 0.FF(F) < 0, or | log(x), sigmoid, gaussian... | Learningrate: 1 <y < 1.121

2. xis not a minima of f. oo ) | f R
(ii) if k is even and f B < 0. Initialization: some conditions that guarantee x, y > 0 always

Convergence: it converges to a period-2 orbit as
{(x = y 5) | | = 1 2} where 51, 52 are the same as above.
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Experiments: MLPs on MNIST Obs 1: v,(Hessian) aligns with V Loss in direction Obs 2:3[ fY]> — /"™ > O holds at§ |

Summary

In the settingof n > 2/4 .. (H()'c)), we show y - - » ame——
. | T 1o fcostviored ) e A Balancmg effect |x y| — O desplte of dlfferent init.

(i) Existence of SO and convergence on 1D functions, f S 2 125 | |
| S o S o) * . Previous balancing effects:

(ii) Provable convergence on single-neuron RelLU net, f C . i | s,

. . o | . 5 50 ' (i) [Du2018] GF: x~ — y“ remains unchanged.

(iii) Observations of convergence on matrix factorization. 1075 =

S e e e T o 25 S0 75 100 15 150 175 200 ﬁ (u) [WangZOZZ] GD below EoS x> — y gets smaller but notO

epochs epochs

Setting Convergence Setting | Convergence (observations)
. d (a) Learnable weights: Y, Z € R4, Forn € (1,1.121) and n(1 + 4,) < 2, it converges to
(a) Student net: vER, Forn = K-——withK € (1,1.121), it converges to 7 A ) i« ) J
w, x € R, Wl (b)Target: PSD C & R4 with A =1, 1. Balancing effect 2. Oscillation in 1D subspace:
T 1. Directional alignment: 1 . ,
(b) Teacher model: y [ x = o(W " x), prOleW — 0as O ((1 _ 0.03OK)t) (c) Loss: L(Y, Z) = EHYZ — Cl|% Y =ouv T+ Z o, ]uijy]
2 T 2 T
: : _ L0y YZ' —C=("— Duu
(c) Population loss: L(0) = E .. ¢a-1 [f(x, ) —y |x] : 2. Balancing effect: D - t S
‘v ~iwll ‘ 50 condition at any minimizer Z = Suv +2 Gzﬂf‘zﬂ’z]

Flattest minima For any minimizer with YZ' = C, consider the 'Wa
ng2022]

3. Stable oscillation:

For any minimizer with viw = w, the largest s | eee——————— 1D function L, at the cross section of the loss o
eigenvalue of Hessian is v = |lw| is in a period-2 orbit landscape L and the leading eigen-direction A of . | o diverge 2
(|lw]| = )2 + 21|l 1|1 e HessiaN. g 2l ertor<
A = > 2—. | References ,; 2 0g.
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